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Baxter's Solution for the Free Energy of the
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In honor of Baxter's sixtieth birthday, we would like to review some of his work
on the free energy of the chiral Potts model. In spite of the enormous com-
plexity and difficulty of the problem, Baxter, using functional relations was able
to calculate not only the free energy, but also the interfacial tension. We here
show that the integral for the free energy simplifies in the superintegrable case
and is identical to his earlier results using entirely different approaches. His
calculations are extended to include other regions. We also attempt to clarify
some of his reasoning as several steps may be mysterious at first glance.

KEY WORDS: Chiral Potts model; transfer matrices; partition function;
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1. INTRODUCTION

The integrable chiral Potts model is a two-dimensional lattice model��to
each site of the lattice we associate a spin which takes N different values
and two ``rapidity lines'' cross each edge.(1) Here we shall consider a square
lattice rotated 45% so that the rapidity lines are oriented horizontally and
vertically marking the commuting diagonal transfer matrices, which also
commute with Hamiltonians of certain quantum spin chains.(2) A recent
review of the model is given in ref. 3.

The Boltzmann weights for the pair interaction between the two spins
on an edge are given by

Wpq(n)=\ +p

+q+
n

`
n

j=1

yq&xp| j

yp&xq| j , W� pq(n)=(+p +q)n `
n

j=1

|xp&xq| j

yq& yp| j

(1.1)
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Fig. 1. Boltzmann weights Wpq(a&b) and W� pq(a&b) for the two types of edge interaction
between the spins a and b.

in which |=e2?i�N. The weights are shown in Fig. 1, where the subscripts
p and q are the two rapidity variables. We associate with every rapidity
line p (or q), a variable tp (or tq). Let *p=+N

p , then * is related to t by

*p+*&1
p =(1+k$2&k2tN

p )�k$ (1.2)

where k2+k$2=1. The variables k and k$ are fixed and the same for all the
rapidity lines, and they are related to the temperature of the system (with
k$ � 0 for T � 0 and k$ � 1 for T � Tc). We can uniquely determine * from
this quadratic equation by choosing the branch with either *>1 or *<1.
Now, let

yN
p =(1&k$*p)�k, xN

p =(1&k$�*p)�k (1.3)

Consequently, xp , yp and +p are given in terms of tp up to an integral
power of |. Since xN

p yN
p =tN

p , we make the further restriction xp yp=tp .
Thus the variables x, y and + (with subscript p or q) on the right-hand side
of (1.1) are now completely determined except for some irrelevant | fac-
tors. It is easily seen from (1.3), that * � 1�* corresponds to interchanging
x and y; thus moving from one Riemann sheet to the other corresponds to
interchanging x and y in the weights.

The transfer matrices are defined by

T (xq , yq)__$= `
L

J=1

Wpq(_J&_$J) W� p$q(_J+1&_$J) (1.4)

T� (xq$ , yq$)_$_"= `
L

J=1

W� pq$(_$J&_"J) Wp$q$(_$J&_"J+1) (1.5)

472 Au-Yang, Jin, and Perk



where L_M denotes the size of the lattice. They have been shown(4) to
satisfy some functional relations:

4 ( j)
q T (xq , yq) T� (| jyq , xq)=X& jH� ( j)

p$q{ j (tq)+H ( j)
pq {N& j (| jtq) (1.6)

{j (tq) {2(| j&1tq)=z(| j&1tq) X{j&1(tq)+{ j+1(tq) (1.7)

{N+1(tq)=z(tq) X{N&1(|tq)+(:q+:� q) 1 (1.8)

where X is the spin shift operator,

X_, _$= `
L

J=1

$(_J , _$J+1), $(n, j)={1
0

if n= j mod N
otherwise

(1.9)

Unlike the eigenvalues of transfer matrices, whose dependences on tq are
very complicated, the elements and the eigenvalues of the matrices {j (tq)
are polynomials in tq of degree ( j&1) L with {0(t)=0 and {1(t)=1. The
scalar variables in these equations are

H ( j)
pq =_k(|+p) j *q `

j&1

l=0

(tp&|ltq)&
L

<[k$(1&*q*p)]L

(1.10)

H� ( j)
p$q=[(1&*q*p$)]L<_k+ j

p$ `
j&1

l=0

(tp$&| ltq)&
L

while 4 ( j)
q =4 ( j, 0)

q with

4 ( j)
q =_+ j

p `
j&1

l=0

( yq&|&lxp) `
N&j&1

l=0

( yq&|lyp$)&
L

<[N( yp&xq)( yq& yp$)]
L

(1.11)

z(tq)=[|+p+p$(tp&tq)(tp$&tq)]L (1.12)

:q=[k$(1&*p*q)(1&*p$ *q)�k2*q]L (1.13)

:� q=[k$(*q&*p)(*q&*p$)�k2*q]L (1.14)

Since all the matrices commute, these relations are the functional relations
between their eigenvalues. It is straightforward to verify that

`
N&1

j=0

z(| jtq)=:q:� q (1.15)

A few differences between Baxter's earlier paper, (5) and his later papers (6�8)

are to be noted here. The normalization of weights was originally chosen(5)

such that the product of the N different weights is > W(n)=1, but it was
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changed to W(0)=1 in the later papers.(6�8) The latter choice is superior,
as the elements of the transfer matrices are simpler, being ratios of polyno-
mials in xq and yq . We now list the differences,

Wpq(n)=W$pq(n)�W$pq(0), \N
pq= `

N&1

j=0

Wpq(n)=1�W$pq(0)N

\$N
pq=1; {j (t)=( yp yp$)

( j&1) L {$j (t), z(tq)=( yp yp$)
2L z$(tq)

:q=( yp yp$)
NL :$q , :� q=( yp yp$)

NL :� $q (1.16)

T (xq , yq)=[\pq \� p$q]L T $(xq , yq)

T� (xq , yq)=[\� pq \p$q]L T� $(xq , yq)

where the old conventions are denoted2 with ``primes.'' It is easily seen from
(1.10) that

H ( j)
pq �H� ( j)

p$q= `
j&1

l=0

z(|ltq)�:q (1.17)

Consequently, if we let

1 ( j)
q =:q4 ( j)

q �H� ( j)
p$q (1.18)

then (1.6) is equivalent to

1 ( j)
q T (xq , yq) T� (| jyq , xq)=X& j:q{j (tq)+ `

j&1

l=0

z(| ltq) {N& j (| jtq) (1.19)

which is the form in ref. 5. It is easy to verify the following identity,

1 ( j)
q =[\pq \� p$q \� pq$ \p$q$]

&L ( yp yp$)
(N+ j&1) L 1 $ ( j)

q (1.20)

in which q$=q� ( j, 0), a notation introduced in (BBP2.36).3

Iterating (1.7) N&1 times, and then combining with (1.8), we find

{2(tq) {2(|tq) } } } {2(|N&1tq)=(:q+:� q)+!(t) (1.21)

where !(t) is a sum of products of the polynomials {2(t) and z(t). From this
equation all the coefficients of the polynomial {2(t) can be evaluated in
principle by solving a system of L&1 coupled Nth order polynomial equa-
tions. However, as the lattice size L increases, it becomes a numerical
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nightmare. When {2(t) is obtained, we can use (1.7) to obtain {j (t) for
j=3,..., N successively.

It is easily verifiable(8) that

T (xq , yq) T (|xq , yq) } } } T (|N&1xq , yq)=dqS(*q)
(1.22)

T� ( yq , xq) T� (|yq , xq) } } } T� (|N&1yq , xq)=d� qS(1�*q)

where S(*) is a polynomial in * of degree (N&1) L, and

1�dq=c `
N&1

j=1

( yp$&| jyq) jL `
N&1

j=0

(xp&| jyq) (N&1& j) L

(1.23)

1�d� q=c `
N&1

j=1

( yp&| jxq) jL `
N&1

j=0

(xp$&| jxq) (N&1& j) L

with c=[(*p*p$)
(N&1)�2�N N]L�2. Letting j=0 in (1.6), we find

4 (0)
q T (xq , yq) T� ( yq , xq)=H (0)

pq {N(tq) (1.24)

whereas letting j=N in (1.6), we obtain

4 (N )
q T (xq , yq) T� ( yq , xq)=H� (N )

pq {N(tq) (1.25)

Thus the identity

H� (N )
pq �4 (N )

q =H (0)
pq �4 (0)

q (1.26)

must hold, as can be easily verified.
Replacing xq in (1.24) by |xq ,..., |N&1xq , and multiplying together all

the N resulting equations, we get

S(*q) S(1�*q)=X&N(N&1)�2{N(tq) {N(|tq) } } } {N(|N&1tq) (1.27)

Whenever {N(t) is given, this equation can be used together with (1.2) to
obtain all the zeroes of S(*). Letting j=0,..., N&1 in (1.6) and multiplying
these N equations together, we get

T (xq , yq)N d� qS(*&1
q )= `

N&1

j=0

[[|& jH� ( j)
p$q{ j (tq)+H ( j)

pq {N& j (| jtq)]�4 ( j)
q ]

(1.28)

From this equation, all the eigenvalues of the transfer matrix can be
evaluated in principle when the polynomials S(*q) and {j (tq) are given.

The outline of this paper is as follows: We first examine the functional
relations in the simplest case, namely the Ising case with N=2 in Section 2.
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We then review, in Section 3, the steps used by Baxter to obtain the free
energy for the N-state chiral Potts model for two different regimes. The
results then are extended, in Section 4, to other regimes by rotations and
symmetries. In Section 5 we show that the expressions simplify in the
superintegrable case, and are identical to Baxter's old result.(9) There are
two different but equivalent integral forms given by Baxter(5, 10, 11) for the
free energy. Baxter was able to show(11) that the free energy given in the
alternative integral form is equivalent to his earlier results in ref. 12
obtained using symmetries and invariances of the chiral Potts model. We
simplify his procedure(5) that transforms from one form to the other in
Section 6, and show that in the different regimes the alternative integral
expressions are not the same, but differ slightly.

2. ISING CASE WITH N=2

The functional relations provide a way to calculate all the eigenvalues
of the transfer matrices. We now illustrate this using the simplest case with
N=2 which is the Ising model.

Using some special property of the Ising model and one of the func-
tional relations, Baxter(13) was able to reproduce the result of Onsager and
to obtain all the eigenvalues of the Ising model as

T (xq , yq)=c `
j # J

(u&e\i%j ) `
j � J

(#\# j ) (2.1)

where J is some subset of the integers 1,..., [L�2], and

u=&sinh 2K�sinh 2K� , #=coth 2K coth 2K� (2.2)

Since X2=1, its eigenvalues are given as r=\1. The variables %j in (2.1)
are different for different r.

%j={(2j&1) ?�L
2j?�L

for r=1
for r=&1

(2.3)

while

#j=[1&2k$ cos %j+k$2]1�2 (2.4)

By choosing different signs in (2.1), we can obtain 2_2L different eigen-
values.

476 Au-Yang, Jin, and Perk



We now express these variables in terms of variables used in the chiral
Potts model. They are

u=
(tp&tq)(*q&*p)

(tp+tq)(1&*p *q)
, #=[1&k$(u+u&1)+k$2]1�2 (2.5)

Thus, we can see from (2.1) that the eigenvalues of the transfer matrix can
not be written as a product of polynomials in t and *, different from what
happens in the superintegrable case.(9)

We next illustrate how the functional relations can also be used to
obtain all the eigenvalues. For N=2, we replace X in (1.7) and (1.8) by its
eigenvalue r and then combine the two equations to get

{2(tq) {2(&tq)=r[z(tq)+z(&tq)]+(:q+:� q) (2.6)

where :q:� q=z(tq) z(&tq). Now from (1.24), we find

{2(tq) {2(&tq)

=rS(*q) S(1�*q)=[:q+rz(tq)][1+rz(&tq)�:q]

= `
L

j=1

[[:1�L
q &ei%j[z(tq)]1�L][1&e�i%j[z(&tq)�:q]1�L]] (2.7)

=A `
L

j=1

[(tq&tj )(tq+t& j )]=B `
L

j=1

[(*q&*j )(*q&1�*& j )] (2.8)

In (2.7) %j is the same as defined in (2.3). Using (1.12)�(1.14) and (1.2), we
may rewrite the product of the two factors in (2.7) as a second order poly-
nomial in t, if the signs of %j in these two factors are chosen to be opposite
(\=&); or as a second order polynomial in * if the signs are chosen
equal (\=+). Solving these quadratic equations, we find the roots as

tj=
[2iktp*p sin %j+(*2

p&1) #j]

k(e&i%j&*p)(*p&ei%j )
, *j=&

*pei%j (ktp+#j )
2

k$(*p&ei%j )2 (2.9)

Hence,

{2(tq)=- A `
L

j=1

(tq\t j ), S(*q)=- B `
L

j=1

(*q&*\1
j ) (2.10)

Combining the two equations in (1.19) we obtain

1 (0)
q 1 (1)

q T 2(xq , yq) S(1�*q)={2(tq)[:qr+z(tq)] (2.11)
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This equation is used to show that the \ signs in (2.10) are related,
namely

{2(tq)=- A `
j # J

(tq&t j ) `
j � J

(tq+tj )
(2.12)

S(*q)=- B `
j # J

(*q&*j ) `
j � J

(*q&1�* j )

where J is some subset of integers in 1,..., L. Putting these into (2.11) we
find all eigenvalues of the transfer matrix. It is highly nontrivial to show
this result is identical to the one found by Baxter in (2.1), but it can be
done.

3. THE LARGEST EIGENVALUE

To calculate the free energy, we need to calculate the largest eigen-
value of the transfer matrix. As in the Ising model, to determine which one
is the largest eigenvalue, we need to examine the zero-temperature limit,
where for the ferromagnetic case, the largest eigenvalue is known. In the
chiral Potts model, the limit T � 0 corresponds to k$ � 0. It can be seen
from (1.2) that, for given t, * is either k$ or 1�k$, depending on the choice
of the Riemann sheet with *<1 or *>1. If both tq and tp are arbitrary,
then the weights in (1.1) cannot be made to correspond to the zero-tem-
perature ferromagnetic weights with

Wpq(n)=$(n, 0), W� pq(&n)=$(n, 0) (3.1)

If, however, we have tN � 1 for one of the rapidity variables, then the
corresponding * is finite. In this section, the case |+q |>1 but |+p+p$ |<1
or |+p+p$ |>1 will be considered. We choose

*q B 1�k$, xp , yp , xp$ , yp$ , xq � 1, yq � tq (3.2)

Consequently, (1.1) becomes

Wpq(n) B k$n�N, W� pq(&n) B k$n�N (3.3)

There are seemingly many other choices��these are the subtleties which we
have not yet understood. From (3.3) we find that, as k$ � 0, the Boltzmann
weights are zero except when the adjacent spins are equal. Since the shift
operator X, the transfer matrices, and the {j (tq) all commute, they can be
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simultaneously diagonalized. The common eigenvector, which gives the
largest eigenvalue of the transfer matrix in the Q sector, is

|Q) = :
N&1

_=0

|Q_ |_) , |_) =|_1=_2 } } } =_L=_) (3.4)

such that

X |Q)=|Q |Q) (3.5)

From (BBP3.44) and (BBP3.48), for a given choice of Q, we can explicitly
calculate the corresponding eigenvalue of {2(t) as

{2(tq)=(1&|tq)L+|Q+L(+p+p$)
L (1&tq)L (3.6)

From here on, we shall assume that all the matrices in the functional rela-
tions are in their diagonalized form, and we are considering now the func-
tional relation between the leading eigenvalues whose common eigenvector
gives the largest eigenvalue of the transfer matrix.

As L � �, we find that the case |+p+p$ |>1 is very different from the
case |+p+p$ |<1, namely

{2(tq)={(1&|tq)L

|Q+L(+p+p$)
L (1&tq)L

for |+p+p$ |<1
for |+p+p$ |>1

(3.7)

Consequently, for |+p+p$ |<1, {2(t)tO(1) and its L zeroes are at |&1. As
the temperature increases, we expect the L zeroes of {2(t) to move away
but still to stay around |&1; while for |+p+p$ |>1, we expect {2(t) B
(+p +p$)

L and its L zeroes to be around 1. Now from (1.14) we find that
z(t) B (+p +p$)

L, thus by comparing the order of magnitude we find from
(1.7) that

{j (t)={2(t) {2(|t) } } } {2(| j&2t){B 1
B (+p +p$)

( j&1) L

for |+p +p$ |<1
for |+p+p$ |>1

(3.8)

In the limit k$ � 0, we have *q>>1 and

:q � [*q*p *p$]
L=*L

q[+p+p$]
NL, :� q � *L

q (3.9)

Using (3.8) to estimate the order of magnitude, we find in the limit L � �,
that (1.21) becomes

{2(tq) {2(|tq) } } } {2(|N&1tq) � {:� q

:q

if |+p+p$ |<1
if |+p+p$ |>1

(3.10)
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Thus when the right-hand side of the equation is given as a function of *,
the problem of finding {2(t) whose zeroes are on one of the Riemann
sheets, may be viewed as a generalization of the factorization problem in
Wiener�Hopf sum or integral equations. From (1.2), we write

t=|m 2� (*), 2� (*)=[(1+k$2&k$*&k$�*)�k2]1�N (3.11)

such that the complex *-plane consists of N Riemann sheets. If all the
zeroes of {2(t) are on the l th sheet, then the N&1 functions {2(|mt) for
m{0 have no zeroes on this sheet. Using Cauchy's integral formula,
O'Rourke and Baxter derived that for *q>1, |+p+p$ |<1 and l=&1 (or
N&1)

ln {2(tq)=
1

2?i �|*|=1
d* ln[2� (*)&|tq]

d
d*

ln :� q (3.12)

Letting

*=ei%, 2(%)=[(1+k$2&2k$ cos %)�k2]1�N=2� (*) (3.13)

the above integral can be rewritten as

ln {2(tq)=
L
4? |

2?

0
d% _1+*pei%

1&*pei%+
1+*p$e

i%

1&*p$ e
i%& ln[2(%)&|tq] (3.14)

It is clearly seen from (3.11) and (3.13) that in these integrals, the functions
2(%) and 2� (*) are single-valued and their arguments are in [&?�N, ?�N].

Similarly for |+p+p$ |>1, when the zeroes of {2(t) are around 1, we
find

ln {2(tq)=L ln(|+p+p$)+
1

2?i �|*|=1
d* ln[2� (*)&tq]

d
d*

ln :q (3.15)

yielding

ln
{2(tq)

(|+p+p$)
L=

L
4? |

2?

0
d% _

1+*&1
p ei%

1&*&1
p e i%+

1+*&1
p$ ei%

1&*&1
p$ ei%& ln[2(%)&tq] (3.16)

We may write

1
2? |

2?

0
d%

1+*ei%

1&*ei% :
N&1

m=0

ln[2(%)&|mt]=
1
? |

?

0
d%

(1&*2) ln[2(%)N&tN]
1+*2&2* cos %

(3.17)
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and use (1.2) and (3.13) and the integral formulae, valid for |*|, |+|<1,

|
?

0

d%(1&*2)
1+*2&2* cos %

=?, |
?

0
d%

ln(1++2&2+ cos %)
1+*2&2* cos %

=
2? ln(1&*+)

(1&*2)

(3.18)

to verify that the {2(t) given by either (3.14) or (3.16) satisfies (3.10). Even
though the derivation may seem to lack rigor, and for that reason we have
not even included it here, the results are indeed correct. To summarize,
when the right-hand side of (3.10) is given, being a polynomial in * related
to t by (1.2), then {2(tq) for |*q |>1, whose zeroes are on the l th sheet of
the complex * plane, is given by

ln {2(tq)=d0+
1

2?i �|*|=1
d* ln[|l2� (*)&tq] {

d ln :� q

d*
,

d ln :q

d*
,

if |+p+p$ |<1

if |+p+p$ |>1

(3.19)

where d0 is some constant. From (3.8), we find

{N(t)={2(t) {2(|t) } } } {2(|N&2t) (3.20)

Consequently, for |+p +p$ |<1, we find that the zeroes of {N(t) are around
|&1, |&2,..., |1&N; but not on the Riemann sheets with t=2� (*). There-
fore, we can see from (1.24), that T (xq , yq) cannot have zeroes on this
sheet also; similarly for |+p+p$ |>1, we find that T (xq , yq) has no zeroes
on the Riemann sheet t=|2� (*). Rewriting (1.28) as

T (xq , yq)N d� qS� (*q)=* (N&1) L
q [H (0)

pq {N(tq)�4 (0)
q ] r(*q , tq) (3.21)

where S� (*q)=* (N&1) L
q S(1�*q) and

r(*q , tq)= `
N&1

j=1

[H� ( j)
p$q{j (tq)�4 ( j)

q ]+ `
N&1

j=1

[H ( j)
pq {N& j (| jtq)�4 ( j)

q ] (3.22)

Baxter and O'Rourke(5, 8) then examine (3.21) for |+p+p$ |<1, around
tqt1, where T (xq , yq) and {N(tq) have no zeroes; therefore the zeroes of
r(*q , tq) are the zeroes of S� (*q). Considering the limit k$ � 0, they(8) then
show that the (N&1) L zeroes of r(*q , tq) lie on N&1 circles of different
radius, inside the annulus 1<|*q |<1�k$. These zeroes can be surrounded
by two contours C& and C+ . On the N&1 circles where the zeroes of
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r(*q , tq) are, the two terms in (3.22) must be of the same order of
magnitude, but of opposite sign. As one moves away from these circles, the
difference in magnitude of these two terms becomes big. Using Cauchy's
integral formula, they write

d
d*

ln S� (*)=
1

2?i _�C+

d*$
*&*$

d
d*$

ln r(*$, t$)&�
C&

d*$
*&*$

d
d*$

ln r(*$, t$)&
(3.23)

in which t$=2� (*$). Guided by the results obtained in the limit k$ � 0,
Baxter and O'Rourke found that on the contour C+ the second term of
r(*, t) in (3.22) dominates in the limit L � �, and on the contour C& the
first term dominates. After dropping the exponentially small terms, the two
contours can be shifted to the unit circle. Performing integration with
respect to *, they obtain

ln S� (*)=d1+
1

2?i �|*$| =1
d*$ ln(*&*$)

d
d*$

:
N&1

j=1

ln _
H ( j)

pq {N& j (| jt$)
H� ( j)

p$q{j (t$) &
(3.24)

where d1 is some constant. We use (1.17) to find

`
N&1

j=1

[H ( j)
pq �H� ( j)

p$q]=:&(N&1)
q `

N&1

l=0

z(|ltq)N&1&l=:� (N&1)
q `

N&1

l=1

z(|ltq)&l

(3.25)

where (1.15) is also used, and from (3.8) obtain

:
N&1

j=1

ln[{N& j (| jt$)�{ j (t$)]= :
N&1

j=1

(N&2j) ln {2(| j&1t$) (3.26)

Since the zeroes of {2(t) are around |&1, we find {2(| j&1t) for j=
1,..., N&1 have no zeroes on the sheet t=2� (*), thus the above function
is single-valued on this Riemann sheet. Similarly, we find z(| jt) for
j=1,..., N&1 have no zeroes on the sheet t=2� (*) either, as seen from
(1.12) and (3.2).

After substituting the second identity in (3.25) and (3.26) into (3.24),
the integration involving :� q can be carried out explicitly, while the rest of
the integrand has been shown to be a single-valued function on the sheet
t=2� (*). Using the identity

� d* f (*)
dg(*)

d*
=&� d* g(*)

df (*)
d*

(3.27)
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which is valid if f (*) and g(*) are singled-valued, and (3.14), we arrive at
the final result

ln S� (*q)=d1+(N&1) ln :� q& 1
2 L[A(*&1

q , tp)

+A(*&1
q , tp$)+B(*p , *&1

q )+B(*p$ , *&1
q )] (3.28)

where

A(*q , tp)=
1

2? |
2?

0
d%

1+*qei%

1&*qei% :
N&1

j=1

(N& j) ln[|& j�22(%)&| j�2tp] (3.29)

and

B(*p , *q)=
1

8?2 |
2?

0
d%

1+*pei%

1&*pei% |
2?

0
d,

1+*qei,

1&*qei,

_ :
N&1

j=1

(N&2j) ln[|& j�22(%)&| j�22(,)] (3.30)

If instead, we use the first identity in (3.25), we would obtain the identical
result, even though it is more difficult to justify using (3.27).

These are the most crucial steps. If one uses (1.27) to determine the
zeroes of S� (*), one would find from (3.20) that they are the image of the
zeroes of {2(t). This means that instead of the zeroes of S� (*) lying on the
N&1 circles of different radius, as implied by the solution in (3.28), they
would be lying on just one circle. This just shows the ingenuity of Baxter
in being able to choose the right path.

Similarly, for |+p +p$ |>1, we again find from (3.22) that the zeroes of
S� (*) can be surrounded by two contours C& and C+ , and that Cauchy's
integral formula (3.23) still holds. We then estimate the order of magnitude
of the two terms in (3.22) for t$t| in the limit k$ � 0. We now find on the
contour C+ the first term in (3.22) dominating instead, while on the con-
tour C& the second term dominates. We again drop the insignificant terms,
shift the two contours to the unit circle, and then integrate with respect to
* to obtain a similar equation,

ln S� (*)=d2&
1

2?i �|*$|=1
d*$ ln(*&*$)

d
d*$

:
N&1

j=1

ln _
H ( j)

pq {N& j (| jt$)
H� ( j)

p$q {j (t$) & (3.31)

This equation differs from (3.24) not only in the sign in front of the
integral, but also in the variable t$. Here we have t$=|2� (*$) instead of
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t$=2� (*$). It may be worthwhile to mention again, that calculating the
largest eigenvalue of the transfer matrix, we find for |+p +p$ |<1, the zeroes
of r(*q , tq) on the Riemann sheet t$=2� (*$) are the zeroes of S� (*$), whereas
for |+p+p$ |>1, the zeroes of r(*q , tq) on the sheet t$=|2� (*$) are the
zeroes of S� (*$). Using (3.25), (3.26) and (3.16), we find (3.31) becomes

ln S� (*q)=d2+(N&1) ln :q& 1
2L[C(*&1

q , tp)

+C(*&1
q , tp$)&B(*&1

p , *&1
q )&B(*&1

p$ , *&1
q )] (3.32)

where

C(*q , tp)=
1

2? |
2?

0
d%

1+*qei%

1&*qe i% :
N&1

j=1

j ln[|& j�22(%)&| j�2tp] (3.33)

Finally as S� (*) is now given, (3.21) can be used to calculate the largest
eigenvalue of the transfer matrix, by dropping the exponentially small term
in (3.22). From (1.17) and (1.14), we find that the ratio of the first term to
the second term in (3.22) is of the order (+p+p$)

N(N&1) L�2, thus for
|+p+p$ |<1, the first term is exponentially small, while for |+p+p$ |>1, the
second term is exponentially small. That is

S� (*q) T (xq , yq)N={
=q:� (N&1)

q `
N&1

j=0

[{N& j (| jtq) z(| jtq)& j]

=q `
N

j=1

{ j (tq)

if |+p +p$ |<1

if |+p +p$ |>1

(3.34)

where

=q=d� &1
q * (N&1) L

q `
N

j=1

[H� ( j)
p$q�4 ( j)

q ] (3.35)

and (1.26) and (3.25) are used for the first case. It is easy to show from
(1.10) and (1.11) that

=q=[\pq D� p$q80]NL [*2
q*p �*p$]

(N&1) L�4 (3.36)

in which

\N
pq= `

N&1

n=1

Wpq(n), \� N
pq= `

N&1

n=1

W� pq(n)
(3.37)

DN
pq=detN[Wpq(i& j)], D� N

pq=detN[W� pq(i& j)]
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It was shown in refs. 3, 10, 12 that

D� N
pq=N N�28&N

0 `
N&1

j=1

(tp&| jtq) j

( yq&|& jyp) j (xp&| jxq) j (3.38)

with

80#ei?(N&1)(N&2)�12N (3.39)

and

[D� pq �\� pq]N=N N�28&N
0 [( yN

q & yN
p )(xN

p &xN
q )]&(N&1)�2

_ `
N&1

j=1

(tp&| jtq) j

(3.40)
[D� pqDpq �\pq\� pq]N=N N�kN&1

From (3.8), we find

:
N&1

j=0

ln {N& j (| jtq)= :
N&1

j=1

j ln {2(| j&1tq) (3.41)

:
N

j=1

ln {j (tq)= :
N&1

j=1

(N& j) ln {2(| j&1tq) (3.42)

Consequently, equations (3.34) and (3.36) can be used to give the largest
eigenvalue of the transfer matrix as

N ln Tq= 1
2 LN(ln }~ pq+ln }~ p$q+ln \pq+ln D� p$q) (3.43)

in which we substitute (3.14) into (3.41) and use (3.28) for S� to obtain, for
|+p+p$ |<1,

N ln }~ pq= 1
2 (N&1) ln(*q �*p)&2 :

N&1

j=1

(N& j) ln[|& j�2tq&| j�2tp]

+C(*p , tq)+A(*&1
q , tp)+B(*p , *&1

q ) (3.44)

As can be seen from (3.2) and the fact that the zeroes of S� are evaluated
on the Riemann sheet tq=2� (*q), we find that the above expression is valid
for

|*q |>1 and &
?
N

�arg tp , arg tq�
?
N
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Similarly, we use (3.16) in (3.42) and (3.32) for S� to express (3.34) for
|+p+p$ |>1 as

N ln }~ pq= 1
2 (N&1) ln(*q�*p)&(N&1) ln[k$(1&*q*p)2�*qk2]

+A(*&1
p , |&1tq)+C(*&1

q , tp)&B(*&1
p , *&1

q )+d3 (3.45)

where d3 is again some constant to be determined. It is easily seen from
(3.29) and (3.33) that

I(*p , tq)#A(*p , tq)+C(*p , |tq)

=
(N&1)

2? |
2?

0
d%

1+*pei%

1&*pe i% ln[[2(%)N&tN
q ] |&N2�2] (3.46)

From (3.17) and (3.18) we find the identity, for |*p |<1,

I(*p , tq)=&N(N&1)
?
2

+{(N&1) ln[k$(*q&*p)2�*qk2]
(N&1) ln[k$(1&*p*q)2�*qk2]

for |*q |>1
for |*q |<1

(3.47)

Now we use (3.47) in (3.45) to obtain

N ln }~ pq= 1
2 (N&1) ln(*q�*p)&C(*&1

p , tq)+C(*&1
q , tp)&B(*&1

p , *&1
q )

(3.48)

We may also use (3.47) when p and q are interchanged to write (3.45) as

ln }~ N
pq= 1

2 (N&1) ln(*p �*q)+A(*&1
p , |&1tq)&A(*&1

q , |&1tp)&B(*&1
p , *&1

q )

(3.49)

Since S� given by (3.32) is evaluated on the Riemann sheet tq=|2� (*q), we
find from (3.2), that equations (3.45), (3.48) and (3.49) are valid for the
regime &?�N�arg tp , arg (tq�|)�?�N.

When the rapidity lines satisfy p=p$, the partition function is denoted
by Zpq and the partition function per site(10) is then

}pq=Z1�ML
pq =}~ pq \pq D� pq (3.50)

From the inversion relation, Baxter(10) has shown

}~ pq}~ qp=1 (3.51)
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On the other hand, from (3.30), we find

B(*&1
p , *&1

q )=&B(*&1
q , *&1

p ) (3.52)

Consequently, we can see easily that (3.48) and (3.49) indeed satisfy this
inversion relation (3.51). This shows that the constants are correctly
chosen.

Baxter(5) has also shown that, for |+p |<1 and |+q |<1,

N ln }~ pq= 1
2 (N&1) ln(*q �*p)+A(*p , tq)&A(*q , tp)&B(*p , *q) (3.53)

valid in &?�N�arg tp , arg tq�?�N. It is shown in ref. 8 that (3.44) is an
analytic continuation of (3.53) as *q moves from the inside of the unit circle
to the outside.

4. ROTATIONS AND SYMMETRIES

The weights satisfy the properties(1, 10)

Wpq(n)=W� q*p(n), W� pq(n)=Wq*p(&n) (4.1)

where q*=R&1q, namely

+q*=1�+q , xq*=|&1yq , yq*=xq (4.2)

and

Wpq(n)=W� q, Rp(&n), W� pq(n)=Wq, Rp(&n) (4.3)

in which

+Rp=1�+p , xRp= yp , yRp=|xp (4.4)

Combining them, we find

Wpq(n)=WRp, Rq(&n), W� pq(n)=W� Rp, Rq(&n) (4.5)

From the definitions in (3.37), we obtain

\Rp, Rq=\pq , \q, Rp=\� pq , \q*p=\� pq
(4.6)

D� Rp, Rq=D� pq , D� q, Rp=Dpq , D� q*p=Dpq
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From these relations, we find that the partition per site defined in (3.50)
satisfies

}pq=}(xp , yp , xq , yq)=}Rp, Rq=}(yp , |xp , yq , |xq) (4.7)

=}q*p=}(|&1yq , xq , xp , yp) (4.8)

=}q, Rp=}(xq , yq , yp , |xp) (4.9)

=}R2p, R2q=}(|xp , |yp , |xq , |yq)=}Rmp, Rmq (4.10)

Here,

}Rmp, Rmq

={}(|m�2xp , |m�2yp , |m�2xq , |m�2yq)
}(|(m&1)�2yp , |(m+1)�2xp , |(m&1)�2yq , |(m+1)�2xq)

m even
m odd

(4.11)

As mentioned earlier, interchanging x and y is equivalent to changing * to
1�*. Thus, these rotations allow one to extend (3.44), (3.49) and (3.53) to
other regimes.

We first consider the automorphism T, given in refs. 1, 4, that leaves
t=xy and * unchanged. Let

+Tq=|&1+q , xTq=|xq , yTq=|&1yq (4.12)

Then we find from (1.1) that

Wp, Tq(n)=
Wpq(n+1)

Wpq(1)
, W� p, Tq(n)=

W� pq(n+1)
W� pq(1)

(4.13)

As a consequence, the partition function satisfies

Zp, Tq=[Wpq(1) W� pq(1)]&ML Zpq (4.14)

From (3.37), it is seen that

\p, Tq=
\pq

Wpq(1)
, D� p, Tq=(&1)(N&1)�N D� pq

W� pq(1)
(4.15)

Therefore, for odd N=2n+1, we find from (4.14), (4.15) and (3.50) that

}~ p, Tq=}~ (xp , yp , |xq , |&1yq)=}~ (xp , yp , xq , yq) (4.16)
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Similarly, we find

}~ Tp, q=}~ (|xp , |&1yp , xq , yq)=}~ (xp , yp , xq , yq) (4.17)

This shows that the automorphism T leaves the normalized partition func-
tion per site }~ invariant for odd N=2n+1.

Letting m=2n=N&1 in (4.11), and using (4.6), (4.16) and (4.17), we
find that (4.10) becomes

}~ pq=}~ (|nxp , |nyp , |nxq , |nyq)=}~ (|&1xp , yp , |&1xq , yq) (4.18)

in which the * remains unchanged, but in which tq , tp shift to |&1tq , |&1tp .
Similarly, we let m=2n+1=N in (4.11) to obtain

}~ pq=}~ (|nyp , |&nxp , |nyq , |&nxq)=}~ ( yp , xp , yq , xq) (4.19)

Thus this transformation relates the normalized partition functions where
the tq , tp are unchanged but * is replaced by 1�*.

For |*p |, |*q |<1, we find |*Rp |, |*Rq |>1. If also &?�N�arg tRp�
?�N, and ?�N�arg tRq�3?�N, then (3.49) holds for }~ Rp, Rq . Consequently,
we find using (4.6) that

ln }~ N
pq=ln }~ N

Rp, Rq= 1
2 (N&1) ln(*Rp �*Rq)

+A(*&1
Rp , |&1tRq)&A(*&1

Rq , |&1tRp)&B(*&1
Rp , *&1

Rq ) (4.20)

which, as seen from (4.4), is identical to (3.53), except for the regime of
validity. Combining the two regimes we find (4.24) listed in Table I and
valid for &3?�N�arg(tp)�?�N and &?�N�arg(tq)�?�N.

For |*p |, |*q |>1, &3?�N�arg(tp)�?�N and &?�N�arg(tq)�?�N,
we use (4.19) to invert (4.24), and the result is (4.25) which is also listed
in Table I, and it differs from (3.49) in that |&1t in (3.49) becomes t in
(4.25). Since the regimes of validity for the two equations are different by
a multiplicative | factor, this is consistent with (4.18).

From (4.6), we find

ln }~ q, Rp=ln }~ q*p=ln }~ pq+ln(\pq �\� pq)+ln(D� pq �Dpq) (4.21)

For |*p |<1, |*q |>1, such that |*q* |<1, we consider the regime where
&3?�N�arg(tq*)�?�N and &?�N�arg(tp)�?�N, such that (4.24) holds
for }~ q*p ,

ln }~ N
q*p= 1

2 (N&1) ln(*p*q)+A(*&1
q , tp)&A(*p , |&1tq)&B(*&1

q , *p)

(4.22)
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Table I. Free Energy for Different Regions

|*p |<1, |*q |<1 &?�N�arg(tq)�?�N and &3?�N�arg(tp)�?�N

N ln }~ pq= 1
2 (N&1) ln(*q �*p)+A(*p , tq)&A(*q , tp)&B(*p , *q) (4.24)

|*p |>1, |*q |>1 &?�N�arg(tq)�?�N and &3?�N�arg(tp)�?�N

N ln }~ pq= 1
2 (N&1) ln(*p �*q)+A(*&1

p , tq)&A(*&1
q , tp)&B(*&1

p , *&1
q ) (4.25)

|*p |<1, |*q |>1 &?�N�arg(tq)�3?�N and &?�N�arg(tp)�?�N

N ln }~ pq= 1
2 (N&1) ln(*q �*p)&2 :

N&1

j=1

(N& j ) ln(|& j�2tq&| j�2tp)

+C(*p , tq)+A(*&1
q , tp)+B(*p , *&1

q ) (4.26)

|*p |>1, |*q |<1 &?�N�arg(tq)�3?�N and &?�N�arg(tp)�?�N

N ln }~ pq= 1
2 (N&1) ln(*p �*q)&2 :

N&1

j=1

(N& j ) ln(|& j�2tq&| j�2tp)

+C(*&1
p , tq)+A(*q, tp)+B(*&1

p , *q) (4.27)

Using (3.40) and (3.47), we may rewrite (4.21) as

ln }~ N
q*p=ln }~ N

pq+(N&1) ln *p+2 :
N&1

j=1

(N& j) ln(|& j�2tq&| j�2tp)

&A(*p , |&1tq)&C(*p , tq) (4.23)

Consequently, we find (4.26) in Table I, which is again identical to (3.44),
but with region of validity extended. This shows that all the calculations
are consistent.

Finally, for |*p |>1, |*q |<1, we again use (4.19) in (4.26) to obtain
(4.27) which is given also in Table I. Even though equations (4.16)�(4.19)
are proven here for odd N only, the results in (4.24), (4.25), (4.26) and
(4.27) are valid for even N also, because we have derived these formulae
using a more tedious way, namely by taking a different low-temperature
k$ � 0 limit choosing +q � k$ instead of +p � k$ as Baxter did in ref. 5.

The regime of tp , tq for which (4.24) is valid is different from the
regime for which (4.26) holds. In the intersection of these two regimes, it
is found that (4.26) is an analytic continuation of (4.24) as the variable *q

moves from inside the unit circle to outside the unit circle. However, since
the two regimes do not coincide, it shows that this is not true in general.
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Thus even though the regimes of validity for (4.27) and (4.25) do intersect,
we found that (4.25) is not the analytic continuation of (4.27) when *p is
continued from inside the unit circle to outside. When |*p |, |*q |<1 or
|*p |, |*q |>1 we find from (4.24) or from (4.25) that the inversion relation
(3.51) holds. However, if |*p |<1 and |*q |>1, then we need to use (4.26)
for }~ pq ; and (4.27) for }~ qp ; we find that inversion relation (3.51) does not
hold. This is rather perplexing.

5. SUPERINTEGRABLE MODEL

The model becomes superintegrable when the rapidity variables p$ and
p are related according to

+p$=1�+p , xp$= yp , yp$=xp (5.1)

Consider two ``column'' transfer matrices associated with the two vertical
rapidity lines p and p$,

[T c
p]__$= `

M

J=1

Wpq(_J&_$J) W� pq(_$J+1&_J) (5.2)

[T� c
p$]_$_"= `

M

J=1

W� p$q(_"J&_$J) Wp$q(_$J+1&_"J) (5.3)

Using the rotation property (4.1) we turn the ``column'' transfer matrices
into ``row'' transfer matrices, namely

[T c
p]__$= `

M

J=1

W� q*p(_J&_$J) Wq*p(_J&_$J+1) (5.4)

[T� c
p$]_$_"= `

M

J=1

Wq*p$(_$J&_"J) W� q*p$(_$J+1&_"J) (5.5)

Assuming |*p |<1 and |*q |>1 we can use the results in (4.24) for T c
p

and (4.26) for T� c
p$ to find

(N�M ) ln T c
p= 1

2 (N&1) ln(*p*q)+ln(\� N
pq DN

pq)

+A(*&1
q , tp)&A(*p , |&1tq)&B(*&1

q , *p)
(5.6)

(N�M ) ln T� c
p$=ln(\� N

p$qDN
p$q)&2 :

N&1

j=1

j ln[|& j�2&1tq&| j�2tp]

+ 1
2 (N&1) ln(*q �*p)

+C(*&1
q , tp)+A(*p , |&1tq)+B(*&1

q , *p)
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Equation (3.40) can be used to obtain

(\� pq Dpq \� p$qDp$q)N=N N*1&N
q |&N2(N&1)�4 `

N&1

j=1

[|& j�2&1tq&| j�2tp]2j RN

(5.7)

where

RN=_ (xq&xp)(xq& yp)
(xN

q &xN
p )(xN

q & yN
p )&

N

(5.8)

Consequently, the free energy of the superintegrable model is

M&1 ln(T c
pT� c

p$)=&2f�kBT

=ln(NR|&N(N&1)�4)+N &1[C(*&1
q , tp)+A(*&1

q , tp)]

=ln(NR)+
1

2? |
2?

0
d%

1+*&1
q ei%

1&*&1
q ei% ln _

2(%)N&tN
p

2(%)&tp & (5.9)

If |*q |<1, we use (4.27) for T c
p and (4.25) for T� c

p$ to find the same expres-
sion except *&1

q is replaced by *q . In ref. 7, the free energy of the super-
integrable model was given for *q>1 as

&
2f

kBT
=ln _

NR(tN
p &'N)

(tp&') &+
2
? |

'&1

'
dz _ 1

tp&z
&

NzN&1

tN
p &zN& �(*q , z) (5.10)

where

'N=
1&k$
1+k$

, �(*, z)=tan&1 _} *&1
*+1 } \

'&N&zN

zN&'N +
1�2

& (5.11)

In �(*, z) the absolute sign is not necessary for *>1; it is inserted by us to
make the above result valid for *<1 also. The terms inside the square bracket
of the integrand can be written as derivatives with respect to z, that is

&
2f

kBT
&ln _

RN(tN
p &'N)

(tp&') &
=

2
? |

'&1

'
dz

d
dz

ln _
tN

p &zN

tp&z & �(*q , z) (5.12)

=
2
? _ln _

tN
p &zN

tp&z & �(*q , z)& }
'&1

'
&

2
? |

'&1

'
dz ln _

tN
p &zN

tp&z &
d
dz

�(*q , z)

(5.13)

=&ln _
tN

p &'N

tp&' &&
2
? |

?

0
d% ln _

tN
p &2(%)N

tp&2(%) &
d

d%
�(*q , 2(%)) (5.14)
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where we have performed integration by parts to obtain (5.13). It is easily
seen from (5.11) that �(*q , '&1)=0 and �(*q , ')=?�2 giving a term that
cancels almost all of the second term of the left-hand side of (5.12) leaving
only a constant identical to the one in (5.9). Finally we can change the
integration variable from z to % according to z=2(%) as given by (3.13),
and we can use

�(*q , 2(%))=tan&1 u=
1
2i

ln
(1+iu)
(1&iu)

=\ ln
(*q&ei%)

(1&*qei%)
(5.15)

with + for |*q |>1 and & for |*q |<1, in (5.14) to show that the two
expressions in (5.9) and (5.14) are identical.

6. ALTERNATIVE FORM

There are many different ways of writing the integrals for the free
energy of the chiral Potts model. For example, Baxter has shown in ref. 11
that the free energy obtained from the functional relations is equivalent to
the result of his earlier calculation in ref. 12 obtained using symmetries and
invariances of the weights. However in ref. 11, he uses instead of the results
in (4.24), an alternative form. For this reason, we feel that it is necessary
to transform the results listed in the table to such alternative forms. The
procedures used here are simpler than the ones originally used by Baxter.(5)

Rewrite (3.29), (3.33) and (3.30) as

A(*q , tp)=
1

2? |
2?

0
d%

1+*qei%

1&*qei% M(2(%), tp) (6.1)

C(*q , tp)=
1

2? |
2?

0
d%

1+*qei%

1&*qei% L(2(%), tp) (6.2)

B(*p , *q)=
1

8?2 |
2?

0
d%

1+*pei%

1&*pei% |
2?

0
d,

1+*qei,

1&*qei, N(2(%), 2(,)) (6.3)

where

M(2(%), tp)= :
N&1

j=1

(N& j) ln[|& j�22(%)&| j�2tp] (6.4)

L(2(%), tp)= :
N&1

j=1

j ln[|& j�22(%)&| j�2tp] (6.5)

N(2(%), 2(,))= :
N&1

j=1

(N&2j) ln[|& j�22(%)&| j�22(,)] (6.6)
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It is easily seen that

N(t, s)= :
N&1

j=1

(N& j) ln[|& j�2t&| j�2s]& :
N&1

j=1

j ln[|& j�2t&| j�2s]

= :
N&1

j=1

j ln[(s&| jt)�(t&| js)] (6.7)

Now letting t�s=e2x�N and a=2j&N and using

ln _1+e(i?a+2x)�N

e i?a�N+e2x�N &=P |
�

&�
d;

e2i;x�?

; sh N;
sh a; (6.8)

which is valid for |Re a|<N and |Im x|< 1
2 ?(N&|Re a| ), with P denoting

the principal value, we may express (6.7) as

N(t, s)=
1
2

P |
�

&�
d;

(t�s) i;N�?

; sh N;
s(;) (6.9)

where

s(;)=2 :
N&1

j=1

j sh(2j&N ) ;

=_N ch(N&1) ;
sh ;

&
sh N;
sh2 ; &=&s(&;) (6.10)

Likewise (6.5) may be put in the form

L(t, s)=
1
2

:
N&1

j=1

(N& j) ln[|& j�2s&| j�2t]+
1
2

:
N&1

j=1

j ln[|& j�2t&| j�2s]

= &
1
4

N(N&1) ?i+
1
2

N ln _sN&tN

s&t &&
1
2

:
N&1

j=1

j ln _s&| jt
t&| js& (6.11)

Again, if we let t�s=e2x�N and use (6.8) and

ln _ sh x
sh(x�N )&=&

1
2

P |
�

&�
d;

e2i;x�?

; sh N;
sh(N&1) ;

sh ;
(6.12)
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which is valid for |Im x|<?, we can express (6.11) as

L(t, s)=M(s, t)=
1
4

N(N&1)[&?i+ln(ts)]

&
1
4

P |
�

&�
d;

(t�s) i;N�?

; sh N;
[t(;)+s(;)], t(;)=

N sh(N&1) ;
sh ;

(6.13)

in which t(&;)=t(;).
Substituting (6.9) into (6.3), we find

B(*p , *q)=
1
4

P |
�

&�

d;
; sh N;

s(;) f(*p , ;) f(*q , &;) (6.14)

where

f(*q , ;)=
1

2? |
2?

0
d%

1+*qei%

1&*qei% 2(%) i;N�?=&f(*&1
q , ;) (6.15)

We can substitute (6.13) into (6.1) and find

A(*q , tp)=
1
4

ln(&tp y2
q)N(N&1)&

1
4

P |
�

&�

d;t i;N�?
p

; sh N;
[t(;)+s(;)] f(*q , &;)

(6.16)

where (3.18) is used to carry out the integral. If *q is replaced by *&1
q in

the above equation, we can see from (3.18) that we not only need change
*q � *&1

q in f(*, t), but also change y2
q � x2

q . In addition, we may use the
fact that s(;) is an odd function in ; and t(;) is even, to change the
integration variable from ; � &;. From (6.13) and (6.2), we obtain

C(*&1
p , tq)=

1
4

ln(&tqx2
p)N(N&1)&

1
4

P |
�

&�

d;t&i;N�?
q

; sh N;
[t(;)+s(;)] f(*&1

p , ;)

(6.17)

We now restrict ourselves to the regimes &?�N�arg(tp), arg(tq)�?�N
such that (6.8) and (6.12) hold. Using (6.16) and (6.14) in (4.24), we find
that for |*p |, |*q |<1 the ``dimensionless'' (or normalized) free energy can
be written in the alternative form

N ln }~ pq=
1
4

(N&1) ln(Jq �Jp)&
1
4

P |
�

&�

d;
; sh N;

[t(;) Fpq&s(;) Hpq]

(6.18)
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where

Jq=&*2
q xN

q �yN
q (6.19)

Fpq=[f(*p , ;) t&i;N�?
q &f(*q , &;) t i;N�?

p ] (6.20)

Hpq=[f(*p , ;) t&i;N�?
q +f(*q , &;) t i;N�?

p &f(*p , ;) f(*q , &;)] (6.21)

The integral in (6.15) can be written in terms of the variable *=ei% as

f(*q , ;)=
1

2?i �|*|=1

d*
*

*&1
q &*q

(*&1
q +*q&*&1&*)

2� (*) i;N�? (6.22)

Now we change the variable from * to !=2� (*)N, such that

*+1�*=(1+k$2&k2!)�k$=2+, *=++- +2&1

d*
*

=
d!
*

d+
d!

d*
d+

=&
k2

2k$
d!

- +2&1
=&

d!

- (!0&!)(!&1
0 &!)

(6.23)

The integration over * around the unit circle is now changed to an integra-
tion along a contour C! around a cut from !0='N to 1�!0='&N in the
complex !-plane. Consequently, we use (6.23) and (1.2) to find

f(*q , ;)=&
k$

2?ik2 �
C!

d! !i;�?

- (!0&!)(!&1
0 &!)

*&1
q &*q

!&tN
q

(6.24)

Since !i;�? has a cut from &� to 0 with !=|!| ei? above the cut and
!=|!| e&i? below the cut, we may, by subtracting the pole contribution at
!=tN

q , deform the above integration contour. We obtain a new closed con-
tour which has four pieces. The first piece is an integration from &� to
0 above the cut. The next piece goes around the branch point 0 on a circle
with infinitesimally small radius to a point below the cut. Thirdly we
integrate from 0 to &� below the cut. Finally, we close the contour of
integration by moving around a large circle with infinite radius counter-
clockwisely. The contributions from the two circles are zero. This yields

f(*q , ;)=t iN;�?
q _

*&1
q &*q

|*&1
q &*q |

&sh ;Gq(;)& (6.25)

where

t iN;�?
q Gq(;)=

k$
?ik2 |

�

0

dz zi;�?

- (!0+z)(!&1
0 +z)

*&1
q &*q

z+tN
q

(6.26)
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and we have also used the identity

(!0&tN
q )(!&1

0 &tN
q ) k4=k$2(*&1

q &*q)2 (6.27)

If we let z=e2x in (6.26), and use the convention(10)

tN
q =&e2iuq, k$(*&1

q &*q)=&2keiuq cos vq (6.28)

it is straightforward to show that (6.26) is identical to Eq. (27) of ref. 10.
Substituting (6.25) into (6.20) and (6.21), we may express the free

energy for |*p |, |*q |<1 given by (6.18) in the form

N ln }~ pq=
1
4

(N&1) ln(Jq �Jp)+
1
4

P |
�

&�
d;

(tp �tq) i;N�?

; sh N;
Epq(;) (6.29)

where

Epq(;)=N sh(N&1) ;[Gp(;)+Gq(&;)]

+[N sh ; ch(N&1) ;&sh N;][(sh ;)&2+Gp(;) Gq(&;)]

(6.30)

which is identical to (28) and (29) of ref. 10.
Similarly, from (4.25), (6.14), (6.16) and (6.25), we find that the free

energy for |*p |, |*q |>1 is

N ln }~ pq=
1
4

(N&1) ln(Jp �Jq)+
1
4

P |
�

&�
d;

(tp �tq) i;N�?

; sh N;
E� pq(;) (6.31)

where

E� pq(;)=&N sh(N&1) ;[Gp(;)+Gq(&;)]

+[N sh ; ch(N&1) ;&sh N;][(sh ;)&2+Gp(;) Gq(&;)]

(6.32)
which is different from (6.30) in the sign of the first term.

Substituting (6.14), (6.16), (6.17) and (6.25) in (4.27), we find that the
free energy for |*p |>1 and |*q |<1 is given by

N ln }~ pq=
1
4

(N&1) ln(Jp �Jq)+
1
2

N(N&1)[&?i+ln(tp tq)]

&2 :
N&1

j=1

(N& j) ln(|& j�2tq&| j�2tp)

+
1
4

P |
�

&�
d;

(tp�tq) i;N�?

; sh N;
[E� pq(;)&2[t(;)+s(;)]] (6.33)
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Now we can use (6.13) to simplify the above equation to

N ln }~ pq=
1
4

(N&1) ln(Jp �Jq)+
1
4

P |
�

&�
d;

(tp �tq) i;N�?

; sh N;
E� pq(;) (6.34)

which is identical to (6.31). Likewise from (4.26), we find using (6.14),
(6.16), (6.17) and (6.25) that the free energy for |*p |<1 and |*q |>1 is also
given by (6.29). Thus, when &?�N�arg(tp), arg(tq)�?�N, equation (6.29)
is valid for |*p |<1 and (6.31) valid for |*p |>1.

CONCLUSIONS

There are many other questions remaining in the chiral Potts model
that need further investigation. For instance, there are many ways of
writing the integrals, and it is not clear, which way would be the most
efficient for numerical evaluation. It is also rather puzzling why the inver-
sion relation (3.51) does not hold when |*p | and |*q | are on different
Riemann sheets in the complex t, or !=tN plane, which has a two sheeted
structure.

Are there other solvable models parametrized by higher genus curves?
This is no easy question. Exactly solvable models are few and hard to find,
because the integrability conditions are rather stringent. For example, the
star-triangle equation for the chiral Potts model involves N 3 identities that
must be satisfied by at most 3(N&1) variables. The integrable chiral Potts
model weights (1.1) were originally found not through logical deduction
but by guessing.(1) Computers were then only used to verify these conjec-
tures, but played no role in the subsequent construction of the proof.

Whenever a calculation is highly repetitive and tedious, the computer
is a marvelous tool. However, computers have not��nor will ever have��
the intuition or inspiration to do what Baxter did for the chiral Potts
model. Therefore, we feel that it is not unreasonable to conclude that the
human mind is far superior to the supercomputer, when used properly.

ACKNOWLEDGMENTS

We would like to thank Dr. R. J. Baxter for helpful and stimulating
comments. We are also grateful to the organizing committee for providing
us with an opportunity to visit Canberra again and to have many fruitful
discussions during the conference. This work was supported in part by
NSF Grants PHY 97-22159 and PHY 97-24788.

498 Au-Yang, Jin, and Perk



REFERENCES

1. R. J. Baxter, J. H. H. Perk, and H. Au-Yang, Phys. Lett. A 128:138 (1988).
2. H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, and M.-L. Yan, Phys. Lett. A 123:219

(1987).
3. H. Au-Yang and J. H. H. Perk, Intern. J. Mod. Phys. B 11:11 (1997).
4. R. J. Baxter, V. V. Bazhanov, and J. H. H. Perk, Int. J. Mod. Phys. B 4:803 (1990).
5. R. J. Baxter, in Proc. of Fourth Asia Pacific Physics Conference, Vol. 1, S. H. Ahn,

I.-T. Cheon, S. H. Choh, and C. Lee, eds. (World Scientific, Singapore, 1991), p. 42.
6. R. J. Baxter, J. Stat. Phys. 73:461 (1993).
7. R. J. Baxter, J. Phys. A 27:1837 (1994).
8. M. J. O'Rourke and R. J. Baxter, J. Stat. Phys. 82:1 (1996).
9. R. J. Baxter, J. Stat. Phys. 57:1 (1989).

10. R. J. Baxter, J. Stat. Phys. 82:1219 (1996).
11. R. J. Baxter, Equivalence of the Two Results for the Free Energy of the Chiral Potts Model,

preprint (1999).
12. R. J. Baxter, J. Stat. Phys. 52:639 (1988).
13. R. J. Baxter, Physica A 177:101 (1991).

499Baxter's Solution for the Free Energy of the Chiral Potts Model


